
 
 
 
 

 
 
 

1 INTRODUCTION 

1.1 Initial Development 
The development of RAVEN (Alfonsi, Rabiti, 
Mandelli, Cogliati, & Kinoshita 2013) started in 
2012, when, within the Nuclear Energy Advanced 
Modeling and Simulation (NEAMS) program, the 
need to provide a modern risk evaluation framework 
became stronger. RAVEN’s principal assignment is 
to provide the necessary software and algorithms in 
order to employ the concept developed by the Risk 
Informed Safety Margin Characterization (RISMC) 
(Smith, Rabiti, et al. 2012) program. RISMC is one 
of the pathways defined within the Light Water 
Reactor Sustainability (LWRS) program. In the 
RISMC approach, the goal is not just specifically 
identifying the frequency of an event potentially 
leading to a system failure, but the closeness (or not) 
to key safety-related events. This approach may be 
used in identifying and increasing the safety margins 
related to those events. A safety margin is a 
numerical value quantifying the probability that a 
safety metric (e.g. as peak pressure in a pipe) is 
exceeded under certain conditions. 

The initial development of RAVEN has been 
focused on providing dynamic risk assessment 
capability to RELAP-7, currently under 
development at the INL and, likely, future repla-
cement of the RELAP5-3D (RELAP5-3D Team, 
2009) code. 

Most of the capabilities implemented having 
RELAP-7 as principal focus are easily deployable 
for other system codes. For this reason, several side 
activities are currently ongoing for coupling 
RAVEN with software such as BISON, fuel 
performance, (Williamson, Hales, et al. 2012), 
RELAP5-3D. This paper is focused on the RAVEN 
software infrastructure and its functionality. 

2 SOFTWARE INFRASTRUCTURE 

2.1 Outlines 
RAVEN has been developed in a highly modular 
and pluggable way in order to enable easy 
integration of different programming languages (i.e., 
C++, Python) and, as already mentioned, coupling 
with any system code.   
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ABSTRACT: Risk Analysis Virtual Environment (RAVEN) is a generic software framework to perform 
parametric and probabilistic analysis based on the response of complex system codes. The initial development 
was aimed at providing dynamic risk analysis capabilities to the Reactor Excursion and Leak Analysis 
Program v.7 (RELAP-7) Thermo-Hydraulic code, currently under development at the Idaho National 
Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose 
probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system 
code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used 
to allow RAVEN to interact with any code as long as all the parameters that need to be perturbed are 
accessible through input files or via python interfaces. RAVEN is capable of investigating the system 
response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its 
strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input 
space leading to system failure, using dynamic supervised learning techniques. The paper presents an 
overview of the software capabilities and their implementation schemes followed by some application 
examples. 



RAVEN is composed of three main software 
systems that can operate either in coupled or stand-
alone mode: 
• Control Logic System 
• Graphical User Interface 
• Probabilistic and Parametric framework 
 

The control logic system and the Graphical User 
Interface are currently available for RELAP-7 only. 
For this reason, attention is focused on the 
probabilistic and parametric framework. 

2.2 Probabilistic and Parametric framework 
The probabilistic and parametric framework 
represents the core of the RAVEN analysis 
capabilities. The main idea behind the design of the 
system is the creation of a multi-purpose framework 
characterized by high flexibility with respect to the 
possible performable analysis. The framework must 
be capable of constructing the analysis/calculation 
flow at run-time, interpreting the user-defined 
instructions and assembling the different analysis 
tasks following a user specified scheme.  

In order to achieve such flexibility, combined 
with reasonably fast development, a programming 
language naturally suitable for this kind of approach 
was needed: Python.   

Hence, RAVEN is coded in Python and is 
characterized by an object-oriented design. The core 
of the analysis performable through RAVEN is 
represented by a set of basic components (objects) 
the user can combine, in order to create a custom 
analysis flow. A list of these components and a 
summary of their most important functionalities are 
reported as follows: 
• Distribution: In order to explore the input/output 

space, RAVEN requires the capability to perturb 
the input space (initial conditions of a system 
code). The initial conditions, that represent the 
uncertain space, are generally characterized by 
probability distribution functions (PDFs), which 
need to be considered when a perturbation is 
applied. In this respect, a large library of PDFs is 
available. 

• Sampler: A proper approach to sample the input 
space is fundamental for the optimization of the 
computational time. In RAVEN, a “sampler” 
employs a unique perturbation strategy that is 
applied to the input space of a system. The input 
space is defined through the connection of 
uncertain variables and their relative probability 
distributions.  

• Model: A model is the representation of a 
physical system (e.g. Nuclear Power Plant); it is 
therefore capable of predicting the evolution of a 
system given a coordinate set in the input space. 

• Reduced Order Model (ROM): The evaluation of 
the system response, as a function of the 
coordinates in the input space, is very 
computationally expensive, especially when 
brute-force approaches (e.g. Monte Carlo 
methods) are chosen as the sampling strategy. 
ROMs are used to lower this cost, reducing the 
number of needed points and prioritizing the area 
of the input space that needs to be explored. 
They can be considered as an artificial 
representation of the link between the input and 
output spaces for a particular system.  

The list above is not comprehensive of all the 
RAVEN framework components (visualization and 
storage infrastructure). 

2.2.1 Distribution 
As already mentioned, the perturbation of the input 
space, through the initial conditions (parameters) 
affected by uncertainties, needs to be performed by 
the proper distribution functions. RAVEN provides, 
through an interface to the BOOST library, the 
following univariate (truncated and not) distribu-
tions: Bernoulli, Binomial, Exponential, Logistic, 
Lognormal, Normal, Poisson, Triangular, Uniform, 
Weibull, Gamma, and Beta. 

The usage of univariate distributions for sampling 
initial conditions is based on the assumption that the 
uncertain parameters are not correlated with each 
other. Quite often uncertain parameters are subject 
to correlations and thus the univariate approach is 
not applicable. This happens when a generic 
outcome is dependent on different phenomena 
simultaneously (i.e. the outcome dependency 
description can not be collapsed to a function of a 
single variable). RAVEN currently supports both N-
dimensional (N-D) PDFs. The user can provide the 
distribution values on either Cartesian or sparse grid, 
which determines the interpolation algorithm used in 
the evaluation of the imported CDF/PDF: 
• N-Dimensional Spline (Habermann, & 

Kindermann 2007), for Cartesian grids 
• Inverse weight (Gordon & Wixom 1978), for 

sparse grids 
Internally, RAVEN provides the needed N-D 

differentiation and integration algorithms to compute 
the PDF from the CDF and vice versa.  

As already mentioned, the sampling methods use 
the distributions in order to perform probability-
weighted perturbations. For example, in the Monte 
Carlo approach, a random number ∈ [0,1] is genera-
ted (probability threshold) and the CDF, 
corresponding to that probability, is inverted in order 
to retrieve the parameter value usable in the 
simulation. The existence of the inverse for 
univariate distributions is guaranteed by the 
monotonicity of the CDF. For N-D distributions this 
condition is not sufficient since the 𝐶𝐷𝐹 𝑋 →



0,1 ,𝑋   ∈ 𝑅! and therefore it could not be a bijective 
function. From an application point of view, this 
means the inverse of a N-D CDF is not unique.  

As an example, the Figure 1 shows a multivariate 
normal distribution for a pipe failure as function of 
the pressure and temperature. The plane identifies an 
iso-probability surface (in this case, a line) that 
represents a probability threshold of 50% in this 
example.  Hence, the inverse of this CDF is an 
infinite number of points. 

 As easily inferable, the standard sampling 
approach cannot directly be employed. When 
multivariate distributions are used, RAVEN 
implements a surface search algorithm for 
identifying the iso-probability surface location. Once 
the location of the surface has been found, RAVEN 
chooses, randomly, one point on it.  

2.2.2 Sampler 
The sampler is probably the most important entity in 
the RAVEN framework. Indeed, it performs the 
driving of the specific sampling strategy and, hence, 
determines the effectiveness of the analysis, from 
both an accuracy and computational point of view.  
The samplers, that are available in RAVEN, can be 
categorized in three main classes: 
• Once-through 
• Dynamic Event Tree (DET) 
• Adaptive 
Once-through Samplers. 
The once-through sampler category collects all the 
strategies that perform the sampling of the input 
space without exploiting, through dynamic learning 
approaches, the information made available from the 
outcomes of calculation previously performed 
(adaptive sampling) and the common system 
evolution (patterns) that different sampled 
calculations can generate in the phase space 
(dynamic event tree).  
In the RAVEN framework, three different and well-
known “once-through” samplers are available:  
• Monte Carlo (MC) 
• Latin Hyper Cube (LHS) 
• Grid Based 
As already mentioned, all these sampling strategies 
are well known, as well as their properties. 

Therefore, a detailed investigation of their 
application is not provided.  
Dynamic Event Tree Sampler 
In order to clarify the idea behind the DET Sampler 
currently available in RAVEN, a small overview is 
needed.  

In technological complex systems, as nuclear 
power plants, an accident scenario begins with an 
initiating event and then evolves over time through 
the interaction of dynamics and stochastic events. 
This mutual action leads to the production of 
infinitely many different scenarios, which define a 
continuous dynamic event tree with infinite 
branches. At each time point, the stochastic 
variability of the accident outcomes is determined by 
a multivariate probability distribution. The PRA 
analysis needs an approximation to this distribution 
for selected consequence variables. A way to 
achieve this goal is an Event Tree approach. In 
dynamic PRA analysis, conventional Event Tree 
(Alfonsi, Rabiti, Mandelli, Cogliati, Kinoshita, & 
Naviglio 2013) sequences are run simultaneously 
starting from a single initiating event. The branches 
occur at user specified times and/or when an action 
is required by the operator and/or the system, 
creating a deterministic sequence of events based on 
the time of their occurrence. One of the 
disadvantages of this method is that the 
timing/sequencing of events and system dynamics is 
not explicitly accounted for in the analysis. In order 
to overcome these limitations a “dynamic” approach 
is needed. The DET (Alfonsi, Rabiti, Mandelli, 
Cogliati, Kinoshita, & Naviglio 2013) technique 
brings several advantages, among which is the fact 
that it simulates probabilistic system evolution in a 
way that is consistent with the severe accident 
model. This leads to a more realistic and 
mechanistically consistent analysis of the system 
taken into consideration. The dynamic PRA, in 
general, and the DET methodologies in particular, 
are designed to take the timing of events explicitly 
into account, which can become very important 
especially when uncertain-ties in complex 
phenomena are considered. Hence, the main idea of 
this methodology is to let a system code determine 
the pathway of an accident scenario within a 
probabilistic “environment”.  

From an application point of view, a N-D grid is 
built on the CDF space. A single simulation is 
spawned and a set of triggers is added to the system 
code control logic. Every time a trigger gets 
activated (one of the CDF thresholds in the grid is 
overpassed), a new set of simulations (branches) is 
spawned. Each branch carries its own conditional 
probability.  

As expected, a continuous monitoring of the 
system evolution in the phase space is needed.  

Figure 1. 2-D CDF, function of pressure and temperature  



Figure 2 shows a practical example. In this particular 
case, it is assumed that the probability failure of a 
pipe depends on the fluid pressure magnitude. Three 
probability thresholds are defined on the cumulative 
distribution function. One simulation is spawned (0). 
As soon as the pressure of the fluid reaches a value 
corresponding to a 33% probability (CDF), a stop 
signal is sent and the framework starts two new 
simulations (branches). The branch in which the 
system evolved to the newer condition (pipe failed, 
red line) carries 33% of the probability, while the 
other the complementary amount. The same 
procedure is repeated at point 2. 

Generally, not all the input space can be explored 
using a DET approach. For instance, usually the 
parameters affected by aleatory uncertainty are 
sampled using a dynamic event tree approach, while 
the ones characterized by epistemic uncertainty are 
sampled through “once-through” sampling 
strategies. At the moment a hybrid approach (“once-
through” sampling of initial conditions followed by 
a dynamic event tree strategy) is currently under 
development.  

As already mentioned, this strategy requires a 
tight interaction between the system code and the 
sampling driver (i.e., RAVEN framework). In 
addition, the system code must have a control logic 
capability (i.e. trigger system). For these reasons, the 
application of this sampling approach to a generic 
code needs a bigger effort when compared to the 
other Samplers available in RAVEN. Currently, the 
DET is fully available for the thermal-hydraulic 
codes RELAP-7 and RELAP5-3D. 

 
Adaptive Samplers 
A recent feature available within RAVEN is the 
possibility to perform smart sampling (also known 
as adaptive sampling) as an alternative to classical 
“once-through” techniques. 

The motivation is that nuclear simulations are 
often computationally expensive, time-consuming, 
and high dimensional with respect to the number of 

input parameters. Thus, exploring the space of all 
possible simulation outcomes is infeasible using 
finite computing resources. During simulation-based 
probabilistic risk analysis, it is important to discover 
the relationship between a potentially large number 
of input parameters and the output of a simulation 
using as few simulation trials as possible.  

This is a typical context for performing adaptive 
sampling where a few observations are obtained 
from the simulation, a reduced order model (ROM) 
is built to represent the simulation space, and new 
samples are selected based on the model 
constructed. The ROM, discussed in section 2.2.4, is 
then updated based on the simulation results of the 
sampled points (see Figure 3). In this way, it is 
attempted to gain the most information possible with 
a small number of carefully selected sampled points, 
limiting the number of expensive trials needed to 
understand features of the system space. 

In the following, the specific use case of 
identifying the limit surface, i.e. the boundaries in 
the simulation space between system failure and 
system success (see Figure 4) is analyzed. 
For this scope two classes of algorithms are 
considered: 

• Model-based algorithms 
• Data-based algorithms 

In the first class, the created ROM aims at 
approximating the real response function of the 
system as function of the input parameters. Once it 
is built, it is used to search for the points that are in 
the proximity of the limit surface using contour 
reconstruction based algorithms. Response function 
can be built using Support Vector Machines (SVM) 
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Figure 2. Dynamic Event Tree simulation pattern 
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(Mandelli & Smith 2012) or Kriging based 
interpolators (Mandelli, Smith, Rabiti, Alfonsi, et al. 
2013). 

On the other side, data-based algorithms do not 
build a response function based ROM but determine 
the location of the limit surface directly from the 
neighborhood graph constructed from the training 
data, without any dependencies on a particular 
prediction model.  

These algorithms begin the search of the limit 
surface by directly building a neighborhood 
structure as the ROM (e.g. a relaxed Gabriel graph) 
(Mandelli, Smith, Rabiti, Alfonsi, et al. 2013) on the 
initial training data. It then creates a candidate set by 
first obtaining linearly interpolated points along 
spanning edges (i.e. edge of the graph that connect 
points having different outcomes) of the graph, and 
introducing a random perturbation along all 
dimensions to these points.  

2.2.3 Models 
The Model entity, in the RAVEN environment, 
represents a “connection pipeline” between the input 
and the output space. The RAVEN framework does 
not own any physical model (i.e. it does not posses 
the equations needed to simulate a generic system), 
but implements APIs by which any generic model 
can be integrated and interrogated. The RAVEN 
framework provides APIs for three different model 
categories: Codes, Externals and ROMs. 
The Code model represents the communication pipe 
between the RAVEN and any system code. 
Currently, RAVEN has APIs for RELAP5-3D, 
RELAP-7 and any MOOSE (Gaston, Hansen, et al. 
2009) based application. 

The External model allows the user to create, in a 
Python file (imported, at run-time, in the RAVEN 
framework), its own model (e.g. set of equations 
representing a physical model, connection to another 
code, control logic, etc.). This model will be 
interpreted/used by the framework and, at run-time, 
will become part of RAVEN itself.  

The data exchange between RAVEN and the 
system code can be performed either by direct 
software interface or by files. If the system code is 

parallelized, the data exchanging by files is 
generally the way to follow since it can be much 
more optimized in large clusters.  

Figure 5 shows a schematic representation of the 
whole framework, highlighting the communication 
pipes among the different modules and engines. As 
can be seen, in the figure all the components 
discussed so far are reported. In addition the data 
management, mining and processing modules are 
shown.  

2.2.4 Reduced Order Models 
As briefly mentioned, a ROM is a mathematical 
representation of a system, used to predict a selected 
output space of a physical system.  

The “training” is a process that uses sampling of 
the physical model to improve the prediction 
capability (capability to predict the status of the 
system given a realization of the input space) of the 
ROM. More specifically, in RAVEN the reduced 
order model is trained to emulate a high fidelity 
numerical representation (system codes) of the 
physical system. Two general characteristics of these 
models can be generally assumed (even if exceptions 
are possible): 
1. The higher the number of realizations in the 

training sets, the higher is the accuracy of the 
prediction performed by the reduced order 
model. This statement is true for most of the 
cases although some ROMs might be subject to 
the over-fitting issues. The over-fitting 
phenomenon is not discussed here, since its 
occurrence is highly dependent on the algorithm 
type, (and there is large number of ROM options 
available in RAVEN). Every time the user 
chooses a particular reduced order model 
algorithm to use, he should consult the relative 
literature.  

2. The smaller the size of the input domain with 
respect to the variability of the system response, 
the more likely the surrogate model will be able 
to represent the system output space. 

In most of the cases of interest, the information 
that is sought is related to defining the failure 
boundaries of a system with respect to perturbations 
in the input space. For this reason, in the 
development of RAVEN, it has been given priority 
to the introduction of a class of supervised learning 
algorithms, which are usually referred to as 
classifiers. A classifier is a reduced order model that 
is capable of representing the system behavior 
through a binary response (failure/success).  

The first class of classifier introduced has been 
the SVM (Mandelli & Smith 2012) with several 
different kernels (polynomial of arbitrary integer 
order, radial basis function kernel, sigmoid) 
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followed by a nearest-neighbor based classification 
using a K-D tree search algorithm. All these 
supervised learning algorithms have been imported 
via an API from the scikit-learn (Pedregosa et al. 
2011) library. In addition, the N-D spline and the 
inverse weight methods, that are currently available 
for the interpolation of N-D PDF/CDF, can also be 
used as ROMs. 

2.2.5 Simulation Environment 
RAVEN is perceived by the user as a pool of 

tools and data. Any action in which the tools are 
applied to the data is considered a ‘step’ in the 
RAVEN environment. For the scope of this paper, 
“multiRun” type of step will be described, since all 
others are either closely related (single run and 
adaptive run) or just used to perform data 
management and visualization. Firstly, the RAVEN 
input file associates the variable definition syntax to 
a set of PDFs and to a sampling strategy. The 
“multiRun” step is used to perform several runs 

(sampling) in a block of a model (e.g. in a MC 
sampling). 

 At the beginning of each sub sequential run, the 
sampler provides the new values of the variables to 
be modified. The code API places those values 
properly in the input file. At this point the code API 
generates the run command and asks to be queued 
by the job handler. The job handler manages the 
parallel execution of as many runs as possible within 
a user prescribed range and communicates with the 
step controller when a new set of output files are 
ready to be processed. The code API receives the 
new input files and collects the data in the RAVEN 
internal format. The sampler is queried to assess if 
the sequence of runs is ended, if not, the step 
controller asks for a new set of values from the 

sampler and the sequence is restarted as described in 
Figure 6.  
The job handler is currently capable to run different 
run instances of the code in parallel and can also 
handle codes that are multi threaded or using any 
form of MPI parallel implementation. 

RAVEN also has the capability to plot the 
simulation outcomes while the set of sampling is 
performed and to store the data for later recovery. 

3 EXAMPLES 

This section shows examples of analyses 
performed using RAVEN with three different codes: 
RELAP-7 (Section 3.1), RELAP5-3D (Section 3.2) 
and an external model (Section 3.3). 

3.1 RELAP-7 analysis 
As already mentioned, the first system code that 

has been driven by RAVEN is RELAP-7. This 
section shows a station blackout analysis on a 
simplified Pressurized Water Reactor using RELAP-
7 as system code. The plant response has been 
analyzed using the Monte Carlo and DET approach.  

3.1.1 Monte Carlo Analysis 
Once the plant is in Station Black-Out (SBO) 

condition, the probability of recovering the 
emergency cooling system is set dependent from the 
recovery of any of the following systems: 
• Diesel Generators (DGs): the power is restored 

when two of the three DG trains are recovered. 
The recovery time 𝑡!"!  of the first train is 
characterized by a normal distribution (σ = 200s, 
µ = 800s). The recovery time of the second train 
𝑡!"!  is characterized by a uniform distribution 
(min = 0.5, max=1.0) and driven by the relation: 
pdf (tDG2) = pdf (tDG1)·U (x). 

• The Reserve Station Service Transformer and 
the main AC line recovery times 𝑡!!!" and 𝑡!"# 
are described by normal distributions  (σRSST/138 
= 500s, µRSST = 1400s, µ138 = 2000s).  

The simulation scope is to assess the 
failure/success ratio of the plant. The goal function 
associated is: 𝜃! 𝑇!  !"# , 𝑡 = 𝛿 𝑇 − 𝑇!" . 
Where 𝑇!  !"# and 𝑇!" are the maximum and the 
failure clad temperatures, respectively. The failure 
temperature of the clad is also a stochastic variable 
characterized by a triangular distribution (min = 
1255K, max = 1700K, peak = 1477K). 

Note that the time at which both diesel generators 
are available needs to be treated as a 
multidimensional distribution function unless the 
recovery of the second train is computed inside the 
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system control logic once the recovery time of the 
first train is already known. For this analysis, 4000 
MC samples were performed.  

3.1.2 Dynamic Event Tree Analysis 
The situation considered is exactly the one 

presented in the MC analysis (see Section 3.1.1) and 
the details of the analysis can be found in (Alfonsi, 
Rabiti, Mandelli, Cogliati, Kinoshita, & Naviglio 
2013). Figure 7 shows the time evolution of the clad 
temperature and a projection of the sampling grid 
pattern generated by the dynamic event trees 
approach. The green lines are the simulation 
continuing while the red dots signal a point where a 
simulation was stopped when reaching the 
maximum clad temperature. It could be noticed that 
there are simulations being stopped at a level of 
temperature that is exceeded in other simulations. 
The reason is of course the random value of the clad 
failure temperature. On the bottom, the plot shows a 
projection of the threshold triggered by the DET 
simulation of the transient. The projection is 
performed by defining the recovery time of the 
auxiliary system 𝐭𝐀𝐂 = 𝐦𝐢𝐧 𝐭𝐃𝐆𝟐, 𝐭𝟏𝟑𝟖, 𝐭𝐑𝐒𝐒𝐓 .  It is 
clear how the competing variable (max clad 
temperature and AC recovery time) are alternatively 
moved towards higher values of their CDF until a 
transition point between success and failure is 

reached. This pattern is generated by 
contemporaneously sampling two antagonist 
variables (or in a terminology more familiar in the 
RISMC framework, contemporaneously sampling 
capacity and load.)  

3.2 RELAP5-3D BWR SBO analysis 
For the RISMC project, we employed RAVEN 

and RELAP5-3D to analyze a Station Black-Out 
(SBO) accident scenario for a Boiling Water Reactor 
(Mandelli, Smith, Alfonsi, Rabiti, et al. 2014). In 
particular, we employed both classical statistical 
tools, i.e. MC, and more advanced machine learning 
based algorithms to perform uncertainty 
quantification in order to quantify changes in system 
performance and limitations as a consequence of 
power uprate. 

In one of these analyses we focused on 
considering a 2-dimensional state space: firewater 
(FW) availability time (measured after ADS 
activation) and battery life. By randomly changing 
these two parameters we observed the outcome of 
each simulation (failure or success) and, by using a 
SVM based classifier, we were able to determine the 
limit surface.  

Results are shown in Figure 8 for two different 
values of power: 100%, and 120%. As expected, a 
longer battery life and a shorter firewater injection 
alignment time lead to success, while a short battery 
life and long firewater alignment time failed.  

Figure 8. FW availability time vs. Battery life: limit surface for 
100% (top) and 120% (bottom) power 

Figure 7. Top: DET a-posteriori Limit Surface. 
Bottom: Clad temperature evolution 



3.3 Space Propulsion System 
For the PSAM conference, a benchmark problem, 

a space propulsion system, was issued in order to 
compare Dynamic PRA methods. In this respect, the 
RAVEN team proposed a solution to this benchmark 
problem using RAVEN coupled with an external 
model that mimics both the dynamic (deterministic) 
and stochastic (e.g., failure on demands, damage 
accumulation, common cause failures) behavior of 
the propulsion system (Mandelli, Smith, Alfonsi & 
Rabiti 2014). The goal was to measure the temporal 
profile of the system reliability over the design life 
(78,000 hours, approximately 9 years). Results are 
shown in Figure 9 for two different cases: 
propulsion system only (with and without common 
cause failures) and propulsion system coupled with 
valve leakages. 

4 CONCLUSIONS 
RAVEN is reaching a level of maturity that 

merits release of the code for testing outside of 
Idaho National Laboratory. The statistical analysis 
framework based on grids and Monte Carlo relies on 
very well assessed methodologies, and has been 
performing well during internal testing. The 
integration of those methodologies with the data 
handling flexibility, the visualization capabilities 
and the ease of coupling with different physical 
model simulators show how RAVEN can be a 
powerful tool for PRA analysis. The DET 
implementation allows also a rapid turnaround time 
for the coupling with other codes as long as access 
to the simulator’s control logic is provided. DETs 
have been identified as one of the most promising 
approaches for PRA. Thus, the development is 
currently focused on making the DET an adaptive 
approach. 

Moreover, the coming release will let the PRA 
community familiarize itself with these enhanced 
techniques like limit surface or ROM construction 

for identifying the leading mechanisms of system 
failure. 
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Figure 9. Temporal profile of the PSAM 2014 space 
propulsion system reliability 

Propulsion**
system*ON*

Propulsion*system*
(without*CCF)*

Final*value*=*0.986**

Propulsion*system*
(with*CCF)*

Propulsion*system*
(w/*CCF)*and*valve*
leakages**


