

1 INTRODUCTION

1.1 Initial Development
The development of RAVEN (Alfonsi, Rabiti,
Mandelli, Cogliati, & Kinoshita 2013) started in
2012, when, within the Nuclear Energy Advanced
Modeling and Simulation (NEAMS) program, the
need to provide a modern risk evaluation framework
became stronger. RAVEN’s principal assignment is
to provide the necessary software and algorithms in
order to employ the concept developed by the Risk
Informed Safety Margin Characterization (RISMC)
(Smith, Rabiti, et al. 2012) program. RISMC is one
of the pathways defined within the Light Water
Reactor Sustainability (LWRS) program. In the
RISMC approach, the goal is not just specifically
identifying the frequency of an event potentially
leading to a system failure, but the closeness (or not)
to key safety-related events. This approach may be
used in identifying and increasing the safety margins
related to those events. A safety margin is a
numerical value quantifying the probability that a
safety metric (e.g. as peak pressure in a pipe) is
exceeded under certain conditions.

The initial development of RAVEN has been
focused on providing dynamic risk assessment
capability to RELAP-7, currently under
development at the INL and, likely, future repla-
cement of the RELAP5-3D (RELAP5-3D Team,
2009) code.

Most of the capabilities implemented having
RELAP-7 as principal focus are easily deployable
for other system codes. For this reason, several side
activities are currently ongoing for coupling
RAVEN with software such as BISON, fuel
performance, (Williamson, Hales, et al. 2012),
RELAP5-3D. This paper is focused on the RAVEN
software infrastructure and its functionality.

2 SOFTWARE INFRASTRUCTURE

2.1 Outlines
RAVEN has been developed in a highly modular
and pluggable way in order to enable easy
integration of different programming languages (i.e.,
C++, Python) and, as already mentioned, coupling
with any system code.

RAVEN and Dynamic Probabilistic Risk Assessment:
Software Overview

Andrea Alfonsi
Idaho National Laboratory, Idaho Falls, USA. E-mail: andrea.alfonsi@inl.gov.

Cristian Rabiti, Diego Mandelli, Joshua Cogliati, Robert Kinoshita
Idaho National Laboratory, Idaho Falls, USA

Antonio Naviglio
University “La Sapienza”, Rome, Italy

ABSTRACT: Risk Analysis Virtual Environment (RAVEN) is a generic software framework to perform
parametric and probabilistic analysis based on the response of complex system codes. The initial development
was aimed at providing dynamic risk analysis capabilities to the Reactor Excursion and Leak Analysis
Program v.7 (RELAP-7) Thermo-Hydraulic code, currently under development at the Idaho National
Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose
probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system
code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used
to allow RAVEN to interact with any code as long as all the parameters that need to be perturbed are
accessible through input files or via python interfaces. RAVEN is capable of investigating the system
response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its
strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input
space leading to system failure, using dynamic supervised learning techniques. The paper presents an
overview of the software capabilities and their implementation schemes followed by some application
examples.

RAVEN is composed of three main software
systems that can operate either in coupled or stand-
alone mode:
• Control Logic System
• Graphical User Interface
• Probabilistic and Parametric framework

The control logic system and the Graphical User
Interface are currently available for RELAP-7 only.
For this reason, attention is focused on the
probabilistic and parametric framework.

2.2 Probabilistic and Parametric framework
The probabilistic and parametric framework
represents the core of the RAVEN analysis
capabilities. The main idea behind the design of the
system is the creation of a multi-purpose framework
characterized by high flexibility with respect to the
possible performable analysis. The framework must
be capable of constructing the analysis/calculation
flow at run-time, interpreting the user-defined
instructions and assembling the different analysis
tasks following a user specified scheme.

In order to achieve such flexibility, combined
with reasonably fast development, a programming
language naturally suitable for this kind of approach
was needed: Python.

Hence, RAVEN is coded in Python and is
characterized by an object-oriented design. The core
of the analysis performable through RAVEN is
represented by a set of basic components (objects)
the user can combine, in order to create a custom
analysis flow. A list of these components and a
summary of their most important functionalities are
reported as follows:
• Distribution: In order to explore the input/output

space, RAVEN requires the capability to perturb
the input space (initial conditions of a system
code). The initial conditions, that represent the
uncertain space, are generally characterized by
probability distribution functions (PDFs), which
need to be considered when a perturbation is
applied. In this respect, a large library of PDFs is
available.

• Sampler: A proper approach to sample the input
space is fundamental for the optimization of the
computational time. In RAVEN, a “sampler”
employs a unique perturbation strategy that is
applied to the input space of a system. The input
space is defined through the connection of
uncertain variables and their relative probability
distributions.

• Model: A model is the representation of a
physical system (e.g. Nuclear Power Plant); it is
therefore capable of predicting the evolution of a
system given a coordinate set in the input space.

• Reduced Order Model (ROM): The evaluation of
the system response, as a function of the
coordinates in the input space, is very
computationally expensive, especially when
brute-force approaches (e.g. Monte Carlo
methods) are chosen as the sampling strategy.
ROMs are used to lower this cost, reducing the
number of needed points and prioritizing the area
of the input space that needs to be explored.
They can be considered as an artificial
representation of the link between the input and
output spaces for a particular system.

The list above is not comprehensive of all the
RAVEN framework components (visualization and
storage infrastructure).

2.2.1 Distribution
As already mentioned, the perturbation of the input
space, through the initial conditions (parameters)
affected by uncertainties, needs to be performed by
the proper distribution functions. RAVEN provides,
through an interface to the BOOST library, the
following univariate (truncated and not) distribu-
tions: Bernoulli, Binomial, Exponential, Logistic,
Lognormal, Normal, Poisson, Triangular, Uniform,
Weibull, Gamma, and Beta.

The usage of univariate distributions for sampling
initial conditions is based on the assumption that the
uncertain parameters are not correlated with each
other. Quite often uncertain parameters are subject
to correlations and thus the univariate approach is
not applicable. This happens when a generic
outcome is dependent on different phenomena
simultaneously (i.e. the outcome dependency
description can not be collapsed to a function of a
single variable). RAVEN currently supports both N-
dimensional (N-D) PDFs. The user can provide the
distribution values on either Cartesian or sparse grid,
which determines the interpolation algorithm used in
the evaluation of the imported CDF/PDF:
• N-Dimensional Spline (Habermann, &

Kindermann 2007), for Cartesian grids
• Inverse weight (Gordon & Wixom 1978), for

sparse grids
Internally, RAVEN provides the needed N-D

differentiation and integration algorithms to compute
the PDF from the CDF and vice versa.

As already mentioned, the sampling methods use
the distributions in order to perform probability-
weighted perturbations. For example, in the Monte
Carlo approach, a random number ∈ [0,1] is genera-
ted (probability threshold) and the CDF,
corresponding to that probability, is inverted in order
to retrieve the parameter value usable in the
simulation. The existence of the inverse for
univariate distributions is guaranteed by the
monotonicity of the CDF. For N-D distributions this
condition is not sufficient since the 𝐶𝐷𝐹 𝑋 →

0,1 ,𝑋 ∈ 𝑅! and therefore it could not be a bijective
function. From an application point of view, this
means the inverse of a N-D CDF is not unique.

As an example, the Figure 1 shows a multivariate
normal distribution for a pipe failure as function of
the pressure and temperature. The plane identifies an
iso-probability surface (in this case, a line) that
represents a probability threshold of 50% in this
example. Hence, the inverse of this CDF is an
infinite number of points.

 As easily inferable, the standard sampling
approach cannot directly be employed. When
multivariate distributions are used, RAVEN
implements a surface search algorithm for
identifying the iso-probability surface location. Once
the location of the surface has been found, RAVEN
chooses, randomly, one point on it.

2.2.2 Sampler
The sampler is probably the most important entity in
the RAVEN framework. Indeed, it performs the
driving of the specific sampling strategy and, hence,
determines the effectiveness of the analysis, from
both an accuracy and computational point of view.
The samplers, that are available in RAVEN, can be
categorized in three main classes:
• Once-through
• Dynamic Event Tree (DET)
• Adaptive
Once-through Samplers.
The once-through sampler category collects all the
strategies that perform the sampling of the input
space without exploiting, through dynamic learning
approaches, the information made available from the
outcomes of calculation previously performed
(adaptive sampling) and the common system
evolution (patterns) that different sampled
calculations can generate in the phase space
(dynamic event tree).
In the RAVEN framework, three different and well-
known “once-through” samplers are available:
• Monte Carlo (MC)
• Latin Hyper Cube (LHS)
• Grid Based
As already mentioned, all these sampling strategies
are well known, as well as their properties.

Therefore, a detailed investigation of their
application is not provided.
Dynamic Event Tree Sampler
In order to clarify the idea behind the DET Sampler
currently available in RAVEN, a small overview is
needed.

In technological complex systems, as nuclear
power plants, an accident scenario begins with an
initiating event and then evolves over time through
the interaction of dynamics and stochastic events.
This mutual action leads to the production of
infinitely many different scenarios, which define a
continuous dynamic event tree with infinite
branches. At each time point, the stochastic
variability of the accident outcomes is determined by
a multivariate probability distribution. The PRA
analysis needs an approximation to this distribution
for selected consequence variables. A way to
achieve this goal is an Event Tree approach. In
dynamic PRA analysis, conventional Event Tree
(Alfonsi, Rabiti, Mandelli, Cogliati, Kinoshita, &
Naviglio 2013) sequences are run simultaneously
starting from a single initiating event. The branches
occur at user specified times and/or when an action
is required by the operator and/or the system,
creating a deterministic sequence of events based on
the time of their occurrence. One of the
disadvantages of this method is that the
timing/sequencing of events and system dynamics is
not explicitly accounted for in the analysis. In order
to overcome these limitations a “dynamic” approach
is needed. The DET (Alfonsi, Rabiti, Mandelli,
Cogliati, Kinoshita, & Naviglio 2013) technique
brings several advantages, among which is the fact
that it simulates probabilistic system evolution in a
way that is consistent with the severe accident
model. This leads to a more realistic and
mechanistically consistent analysis of the system
taken into consideration. The dynamic PRA, in
general, and the DET methodologies in particular,
are designed to take the timing of events explicitly
into account, which can become very important
especially when uncertain-ties in complex
phenomena are considered. Hence, the main idea of
this methodology is to let a system code determine
the pathway of an accident scenario within a
probabilistic “environment”.

From an application point of view, a N-D grid is
built on the CDF space. A single simulation is
spawned and a set of triggers is added to the system
code control logic. Every time a trigger gets
activated (one of the CDF thresholds in the grid is
overpassed), a new set of simulations (branches) is
spawned. Each branch carries its own conditional
probability.

As expected, a continuous monitoring of the
system evolution in the phase space is needed.

Figure 1. 2-D CDF, function of pressure and temperature

Figure 2 shows a practical example. In this particular
case, it is assumed that the probability failure of a
pipe depends on the fluid pressure magnitude. Three
probability thresholds are defined on the cumulative
distribution function. One simulation is spawned (0).
As soon as the pressure of the fluid reaches a value
corresponding to a 33% probability (CDF), a stop
signal is sent and the framework starts two new
simulations (branches). The branch in which the
system evolved to the newer condition (pipe failed,
red line) carries 33% of the probability, while the
other the complementary amount. The same
procedure is repeated at point 2.

Generally, not all the input space can be explored
using a DET approach. For instance, usually the
parameters affected by aleatory uncertainty are
sampled using a dynamic event tree approach, while
the ones characterized by epistemic uncertainty are
sampled through “once-through” sampling
strategies. At the moment a hybrid approach (“once-
through” sampling of initial conditions followed by
a dynamic event tree strategy) is currently under
development.

As already mentioned, this strategy requires a
tight interaction between the system code and the
sampling driver (i.e., RAVEN framework). In
addition, the system code must have a control logic
capability (i.e. trigger system). For these reasons, the
application of this sampling approach to a generic
code needs a bigger effort when compared to the
other Samplers available in RAVEN. Currently, the
DET is fully available for the thermal-hydraulic
codes RELAP-7 and RELAP5-3D.

Adaptive Samplers
A recent feature available within RAVEN is the
possibility to perform smart sampling (also known
as adaptive sampling) as an alternative to classical
“once-through” techniques.

The motivation is that nuclear simulations are
often computationally expensive, time-consuming,
and high dimensional with respect to the number of

input parameters. Thus, exploring the space of all
possible simulation outcomes is infeasible using
finite computing resources. During simulation-based
probabilistic risk analysis, it is important to discover
the relationship between a potentially large number
of input parameters and the output of a simulation
using as few simulation trials as possible.

This is a typical context for performing adaptive
sampling where a few observations are obtained
from the simulation, a reduced order model (ROM)
is built to represent the simulation space, and new
samples are selected based on the model
constructed. The ROM, discussed in section 2.2.4, is
then updated based on the simulation results of the
sampled points (see Figure 3). In this way, it is
attempted to gain the most information possible with
a small number of carefully selected sampled points,
limiting the number of expensive trials needed to
understand features of the system space.

In the following, the specific use case of
identifying the limit surface, i.e. the boundaries in
the simulation space between system failure and
system success (see Figure 4) is analyzed.
For this scope two classes of algorithms are
considered:

• Model-based algorithms
• Data-based algorithms

In the first class, the created ROM aims at
approximating the real response function of the
system as function of the input parameters. Once it
is built, it is used to search for the points that are in
the proximity of the limit surface using contour
reconstruction based algorithms. Response function
can be built using Support Vector Machines (SVM)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

200 250 300 350 400

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

200 250 300 350 400

Pipe failure pressure

Pipe failure pressure

180

230

280

330

0 5 10

180

230

280

330

0 5 10

Failure @66% CDF

Failure @33% CDF

180

230

280

330

0 5 10

Probability

Cumulative Distribution
Function (CDF)

Time

Time

Time

P
re

ss
ur

e P
re

ss
ur

e

P
re

ss
ur

e

180

230

280

330

0 5 10

Time

P
re

ss
ur

e

0
1

2

Figure 2. Dynamic Event Tree simulation pattern

2.  Build/improve a surrogate model: a
model that approximates the plant
behavior

3.  Use the surrogate model to determine
an approximation of the limit surface

4.  Choose the next samples on the
approximate limit surface

5.  Run the “real” model to verify the
approximation

1.  Generate a set of training simulations
to sample the plant response

Reach
convergence

No# Yes#
Stop

Figure 3. Adaptive Sampling Algorithm

Limit%Surface%

Region%of%interest%
to%sample%

System%Success%

System%
Failure%

Figure 4. Graphical representation of the Limit Surface

(Mandelli & Smith 2012) or Kriging based
interpolators (Mandelli, Smith, Rabiti, Alfonsi, et al.
2013).

On the other side, data-based algorithms do not
build a response function based ROM but determine
the location of the limit surface directly from the
neighborhood graph constructed from the training
data, without any dependencies on a particular
prediction model.

These algorithms begin the search of the limit
surface by directly building a neighborhood
structure as the ROM (e.g. a relaxed Gabriel graph)
(Mandelli, Smith, Rabiti, Alfonsi, et al. 2013) on the
initial training data. It then creates a candidate set by
first obtaining linearly interpolated points along
spanning edges (i.e. edge of the graph that connect
points having different outcomes) of the graph, and
introducing a random perturbation along all
dimensions to these points.

2.2.3 Models
The Model entity, in the RAVEN environment,
represents a “connection pipeline” between the input
and the output space. The RAVEN framework does
not own any physical model (i.e. it does not posses
the equations needed to simulate a generic system),
but implements APIs by which any generic model
can be integrated and interrogated. The RAVEN
framework provides APIs for three different model
categories: Codes, Externals and ROMs.
The Code model represents the communication pipe
between the RAVEN and any system code.
Currently, RAVEN has APIs for RELAP5-3D,
RELAP-7 and any MOOSE (Gaston, Hansen, et al.
2009) based application.

The External model allows the user to create, in a
Python file (imported, at run-time, in the RAVEN
framework), its own model (e.g. set of equations
representing a physical model, connection to another
code, control logic, etc.). This model will be
interpreted/used by the framework and, at run-time,
will become part of RAVEN itself.

The data exchange between RAVEN and the
system code can be performed either by direct
software interface or by files. If the system code is

parallelized, the data exchanging by files is
generally the way to follow since it can be much
more optimized in large clusters.

Figure 5 shows a schematic representation of the
whole framework, highlighting the communication
pipes among the different modules and engines. As
can be seen, in the figure all the components
discussed so far are reported. In addition the data
management, mining and processing modules are
shown.

2.2.4 Reduced Order Models
As briefly mentioned, a ROM is a mathematical
representation of a system, used to predict a selected
output space of a physical system.

The “training” is a process that uses sampling of
the physical model to improve the prediction
capability (capability to predict the status of the
system given a realization of the input space) of the
ROM. More specifically, in RAVEN the reduced
order model is trained to emulate a high fidelity
numerical representation (system codes) of the
physical system. Two general characteristics of these
models can be generally assumed (even if exceptions
are possible):
1. The higher the number of realizations in the

training sets, the higher is the accuracy of the
prediction performed by the reduced order
model. This statement is true for most of the
cases although some ROMs might be subject to
the over-fitting issues. The over-fitting
phenomenon is not discussed here, since its
occurrence is highly dependent on the algorithm
type, (and there is large number of ROM options
available in RAVEN). Every time the user
chooses a particular reduced order model
algorithm to use, he should consult the relative
literature.

2. The smaller the size of the input domain with
respect to the variability of the system response,
the more likely the surrogate model will be able
to represent the system output space.

In most of the cases of interest, the information
that is sought is related to defining the failure
boundaries of a system with respect to perturbations
in the input space. For this reason, in the
development of RAVEN, it has been given priority
to the introduction of a class of supervised learning
algorithms, which are usually referred to as
classifiers. A classifier is a reduced order model that
is capable of representing the system behavior
through a binary response (failure/success).

The first class of classifier introduced has been
the SVM (Mandelli & Smith 2012) with several
different kernels (polynomial of arbitrary integer
order, radial basis function kernel, sigmoid)

Database'Manager'
HDF5%storing%structure%%

Hierarchal'
database'

PRA'
database'

Output'
database'

Interface'

RAVEN'

Job'Handler''

Post?Processing''
&'

Data'Mining'module'

Probability'Engine'

CPU'Node''
1'

CPU'Node''
2'

CPU'Node''
N'

Generic'
Model'

Generic'
Model'

Generic'
Model'

Samplers'

Models'

AI/ROM'
Engine'Code'

Interfaces'

External'

Figure 5. RAVEN probabilistic and parametric framework

followed by a nearest-neighbor based classification
using a K-D tree search algorithm. All these
supervised learning algorithms have been imported
via an API from the scikit-learn (Pedregosa et al.
2011) library. In addition, the N-D spline and the
inverse weight methods, that are currently available
for the interpolation of N-D PDF/CDF, can also be
used as ROMs.

2.2.5 Simulation Environment
RAVEN is perceived by the user as a pool of

tools and data. Any action in which the tools are
applied to the data is considered a ‘step’ in the
RAVEN environment. For the scope of this paper,
“multiRun” type of step will be described, since all
others are either closely related (single run and
adaptive run) or just used to perform data
management and visualization. Firstly, the RAVEN
input file associates the variable definition syntax to
a set of PDFs and to a sampling strategy. The
“multiRun” step is used to perform several runs

(sampling) in a block of a model (e.g. in a MC
sampling).

 At the beginning of each sub sequential run, the
sampler provides the new values of the variables to
be modified. The code API places those values
properly in the input file. At this point the code API
generates the run command and asks to be queued
by the job handler. The job handler manages the
parallel execution of as many runs as possible within
a user prescribed range and communicates with the
step controller when a new set of output files are
ready to be processed. The code API receives the
new input files and collects the data in the RAVEN
internal format. The sampler is queried to assess if
the sequence of runs is ended, if not, the step
controller asks for a new set of values from the

sampler and the sequence is restarted as described in
Figure 6.
The job handler is currently capable to run different
run instances of the code in parallel and can also
handle codes that are multi threaded or using any
form of MPI parallel implementation.

RAVEN also has the capability to plot the
simulation outcomes while the set of sampling is
performed and to store the data for later recovery.

3 EXAMPLES

This section shows examples of analyses
performed using RAVEN with three different codes:
RELAP-7 (Section 3.1), RELAP5-3D (Section 3.2)
and an external model (Section 3.3).

3.1 RELAP-7 analysis
As already mentioned, the first system code that

has been driven by RAVEN is RELAP-7. This
section shows a station blackout analysis on a
simplified Pressurized Water Reactor using RELAP-
7 as system code. The plant response has been
analyzed using the Monte Carlo and DET approach.

3.1.1 Monte Carlo Analysis
Once the plant is in Station Black-Out (SBO)

condition, the probability of recovering the
emergency cooling system is set dependent from the
recovery of any of the following systems:
• Diesel Generators (DGs): the power is restored

when two of the three DG trains are recovered.
The recovery time 𝑡!"! of the first train is
characterized by a normal distribution (σ = 200s,
µ = 800s). The recovery time of the second train
𝑡!"! is characterized by a uniform distribution
(min = 0.5, max=1.0) and driven by the relation:
pdf (tDG2) = pdf (tDG1)·U (x).

• The Reserve Station Service Transformer and
the main AC line recovery times 𝑡!!!" and 𝑡!"#
are described by normal distributions (σRSST/138
= 500s, µRSST = 1400s, µ138 = 2000s).

The simulation scope is to assess the
failure/success ratio of the plant. The goal function
associated is: 𝜃! 𝑇! !"# , 𝑡 = 𝛿 𝑇 − 𝑇!" .
Where 𝑇! !"# and 𝑇!" are the maximum and the
failure clad temperatures, respectively. The failure
temperature of the clad is also a stochastic variable
characterized by a triangular distribution (min =
1255K, max = 1700K, peak = 1477K).

Note that the time at which both diesel generators
are available needs to be treated as a
multidimensional distribution function unless the
recovery of the second train is computed inside the

RAVEN Input File

STEP

SAMPLER

CODE API

JOB
HANDLER

Job Handler manages
parallel runs

Syntax Interpreter

Code Command

SAMPLER

Variables are sampled

Input files are
modified through the

sample variables

Code API collects
outputs in the Data

Containers

Sampler decides if
the multiRun ends

Variable
syntax

Sampler
Options

CDFs

Variable values

Variable syntax
Variable values

Modified input files

Modified input files

Output files

Convergence Test

Output files

Data Container

CDFs Pool External Code
variable syntax

Figure 6. Calculation flow for a Multi-run sampling

system control logic once the recovery time of the
first train is already known. For this analysis, 4000
MC samples were performed.

3.1.2 Dynamic Event Tree Analysis
The situation considered is exactly the one

presented in the MC analysis (see Section 3.1.1) and
the details of the analysis can be found in (Alfonsi,
Rabiti, Mandelli, Cogliati, Kinoshita, & Naviglio
2013). Figure 7 shows the time evolution of the clad
temperature and a projection of the sampling grid
pattern generated by the dynamic event trees
approach. The green lines are the simulation
continuing while the red dots signal a point where a
simulation was stopped when reaching the
maximum clad temperature. It could be noticed that
there are simulations being stopped at a level of
temperature that is exceeded in other simulations.
The reason is of course the random value of the clad
failure temperature. On the bottom, the plot shows a
projection of the threshold triggered by the DET
simulation of the transient. The projection is
performed by defining the recovery time of the
auxiliary system 𝐭𝐀𝐂 = 𝐦𝐢𝐧 𝐭𝐃𝐆𝟐, 𝐭𝟏𝟑𝟖, 𝐭𝐑𝐒𝐒𝐓 . It is
clear how the competing variable (max clad
temperature and AC recovery time) are alternatively
moved towards higher values of their CDF until a
transition point between success and failure is

reached. This pattern is generated by
contemporaneously sampling two antagonist
variables (or in a terminology more familiar in the
RISMC framework, contemporaneously sampling
capacity and load.)

3.2 RELAP5-3D BWR SBO analysis
For the RISMC project, we employed RAVEN

and RELAP5-3D to analyze a Station Black-Out
(SBO) accident scenario for a Boiling Water Reactor
(Mandelli, Smith, Alfonsi, Rabiti, et al. 2014). In
particular, we employed both classical statistical
tools, i.e. MC, and more advanced machine learning
based algorithms to perform uncertainty
quantification in order to quantify changes in system
performance and limitations as a consequence of
power uprate.

In one of these analyses we focused on
considering a 2-dimensional state space: firewater
(FW) availability time (measured after ADS
activation) and battery life. By randomly changing
these two parameters we observed the outcome of
each simulation (failure or success) and, by using a
SVM based classifier, we were able to determine the
limit surface.

Results are shown in Figure 8 for two different
values of power: 100%, and 120%. As expected, a
longer battery life and a shorter firewater injection
alignment time lead to success, while a short battery
life and long firewater alignment time failed.

Figure 8. FW availability time vs. Battery life: limit surface for
100% (top) and 120% (bottom) power

Figure 7. Top: DET a-posteriori Limit Surface.
Bottom: Clad temperature evolution

3.3 Space Propulsion System
For the PSAM conference, a benchmark problem,

a space propulsion system, was issued in order to
compare Dynamic PRA methods. In this respect, the
RAVEN team proposed a solution to this benchmark
problem using RAVEN coupled with an external
model that mimics both the dynamic (deterministic)
and stochastic (e.g., failure on demands, damage
accumulation, common cause failures) behavior of
the propulsion system (Mandelli, Smith, Alfonsi &
Rabiti 2014). The goal was to measure the temporal
profile of the system reliability over the design life
(78,000 hours, approximately 9 years). Results are
shown in Figure 9 for two different cases:
propulsion system only (with and without common
cause failures) and propulsion system coupled with
valve leakages.

4 CONCLUSIONS
RAVEN is reaching a level of maturity that

merits release of the code for testing outside of
Idaho National Laboratory. The statistical analysis
framework based on grids and Monte Carlo relies on
very well assessed methodologies, and has been
performing well during internal testing. The
integration of those methodologies with the data
handling flexibility, the visualization capabilities
and the ease of coupling with different physical
model simulators show how RAVEN can be a
powerful tool for PRA analysis. The DET
implementation allows also a rapid turnaround time
for the coupling with other codes as long as access
to the simulator’s control logic is provided. DETs
have been identified as one of the most promising
approaches for PRA. Thus, the development is
currently focused on making the DET an adaptive
approach.

Moreover, the coming release will let the PRA
community familiarize itself with these enhanced
techniques like limit surface or ROM construction

for identifying the leading mechanisms of system
failure.

REFERENCES

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J. & Kinoshita,
R. 2013. Raven as a tool for dynamic probabilistic risk
assessment: Software overview. Proceedings of
International Conference of mathematics and
Computational Methods Applied to Nuclear Science and
Engineering, 1247–1261, San Valley (USA)

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., Kinoshita, R.,
& Naviglio, A. 2013. Dynamic event tree analysis through
Raven, In Proceedings of ANS PSA 2013 International
Topical Meeting on Probabilistic Safety Assessment and
Analysis.

Anders, D., Berry, R. et al., 2012. Relap-7 level 2 milestone
report: Demonstration of a steady state single phase PWR
simulation with relap-7. Tech. Rep. INL/EXT-12-25924,
Idaho National Laboratory.

Gaston, D., Hansen, G. et al. 2009. Parallel multiphysics
algorithms and software for computational nuclear
engineering, Journal of Physics: Conference Series 180(1).

Gordon, W.J., & Wixom, J.A. 1978. Shepard's Method of
"Metric Interpolation" to Bivariate and Multivariate
Interpolation, in Mathematics and Computation 32 (141):
253-264.

Habermann, C. & Kindermann, F. 2007. Multidimensional
Spline Interpolation: Theory and Applications.
Computational Economics 30(2): 153-169.

Mandelli, D. & Smith C. 2012. Adaptive sampling using
support vector machines, in Proceeding of American
Nuclear Society 107: 736-738.

Mandelli, D., Smith, C., Rabiti, C., Alfonsi, A., et al. 2013.
Dynamic PRA: an overview of new algorithms to
generate, analyze and visualize data. In Proceeding of
American Nuclear Society.

Mandelli, D., Smith, C., Alfonsi, A., Rabiti, C., et al. 2014.
Overview of New Tools to Perform Safety Analysis: BWR
Station Black Out Test Case. In Proceeding of
International Conference on Probabilistic Safety
Assessment and Management – PSAM.

Mandelli, D., Smith, C., Alfonsi, A. & Rabiti, C. 2014.
Analysis of the Space Propulsion System Problem Using
RAVEN, In Proceeding of International Conference on
Probabilistic Safety Assessment and Management –
PSAM.

Pedregosa F., et al. 2011. Scikit-learn: Machine Learning in
Python”, Journal of Machine Learning Research, 2825-
2830.

Rabiti, C., Mandelli, D., et al. 2012. Reactor analysis and
virtual control environment (Raven) FY12 report. Tech.
Rep. INL/EXT-1227351, Idaho National Laboratory.

RELAP5-3D Team, 2009. RELAP5-3D Code Manual. Tech.
Rep. INEEL-EXT-98-00834, Idaho National Laboratory.

Smith, C., Rabiti, C., et al. 2012. Risk Informed Safety Margins
Characterization (RISMC) Pathway Technical Program
Plan. Tech. Rep. INL/EXT-11-22977, Idaho National
Laboratory.

Williamson, R.L., Hales, J.D. et al 2012. Multidimensional
multiphysics simulation of nuclear fuel behavior, Journal
of Nuclear Materials 423:149–163.

Figure 9. Temporal profile of the PSAM 2014 space
propulsion system reliability

Propulsion**
system*ON*

Propulsion*system*
(without*CCF)*

Final*value*=*0.986**

Propulsion*system*
(with*CCF)*

Propulsion*system*
(w/*CCF)*and*valve*
leakages**

